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Abstract
The spontaneous phase coherent precession of the magnetization in superfluid 3He-B was
discovered experimentally in 1984 at the Institute for Physical Problems, Moscow by
Borovik-Romanov, Bunkov, Dmitriev and Mukharsky and simultaneously explained
theoretically by Fomin (Institut Landau, Moscow). Its formation is a direct manifestation of spin
superfluidity. The latter is the magnetic counterpart of mass superfluidity and superconductivity.
It is also an example of the Bose–Einstein condensation of spin-wave excitations (magnons).
The coherent spin precession opened the way for investigations of spin supercurrent
magnetization transport and other related phenomena, such as spin-current Josephson effect,
process of phase slippage at a critical value of spin supercurrent, spin-current vortices,
non-topological solitons (analogous to Q-balls in high energy physics) etc. New measuring
techniques based on coherent spin precession made the investigation of mass counterflow and
mass vortices possible owing to the spin–mass interaction. New phenomena were observed:
mass–spin vortices, the Goldstone mode of the mass vortex with non-axisymmetric core,
superfluid density anisotropy etc. Different types of coherent spin precession were later found
in superfluid 3He-A and 3He-B confined in anisotropic aerogel, in the states with counterflow
and in 3He with reduced magnetization. Finally, spin superfluidity investigations developed the
basis for a modern investigation of electron spin supercurrent and spintronics.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Superfluid 3He, since its discovery by Osheroff et al in
1972 [1], became one of the main systems for experimental
studies of quantum fields theories. This is due to the very rich
order parameter of the quantum state for triplet Cooper pairing
of superfluid 3He, which exhibits, in addition to superfluid
properties, the properties of a magnetically ordered quantum
liquid crystal. Owing to the simultaneously broken gauge,
spin and orbit symmetries the Cooper pair wavefunction is
described, not only by a global phase, but also the phases of
rotations about axes in orbital space and spin space. If we
can set up a gradient in these phases of the wavefunction,
the system responds by flowing in an attempt to iron out
the gradients. Spatial gradients of the phase of rotation in
orbital space give an additional term to the mass superfluidity,
while the spatial gradient of the phase of rotation in spin
space provides a new transport process, the spatial transport
of magnetization (spin supercurrent). The complexity of the
spin supercurrents of these phenomena follows from the fact

that it is the coherent transport of a vector quantity, not a scalar
one, as it is for mass and current charges in superfluidity and
superconductivity. Consequently the general expression for the
spin supercurrent has a tensor form and reads [2]:

Jiα = h̄

2m
ρi jαβ� jβ (1)

where ρi jαβ is the spin superfluid density tensor and � jβ are
the phase gradients of the order parameter. In order to observe
the spin supercurrent experimentally one should be able to find
the experimental conditions which prevent the unwinding of
the wavefunction by reorientation of ρi jαβ .

The spin transport equation (1) plays an essential role in
the spin dynamics of 3He. First of all, the solution of the
equations of spin dynamics with the spin transport equations
gives the spin-wave spectrum [2]. Here we are interested
in solutions which correspond to long distance transport of
magnetization by a spin supercurrent. The first attempt to
describe this phenomenon was made in [3]. There it was
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suggested that the fast magnetic relaxation in 3He-A, observed
in [4], can be explained as a transport of magnetization by spin
supercurrents away from the sensitive region of the NMR pick-
up coils. In fact the fast relaxation in 3He-A appears due to a
process analogous to the Suhl instability in antiferromagnets,
as was shown theoretically in [5] and confirmed experimentally
in [6]. Furthermore, in [3] the spin supercurrent was
treated by direct analogy with superfluid mass current. It
should be pointed out, however, that the analogy between the
spin supercurrent and the mass supercurrent is limited since
magnetization is a vector quantity. Consequently there are no
conservation laws for its components, thus spin supercurrents
should be treated in relation to very complex spin dynamics, as
was done by Fomin [7].

The long distance spin supercurrent transport was found
in experiments with superfluid 3He-B. There was observed
a redistribution of magnetization, deflected by pulsed NMR,
and formation of a domain with coherent precession of
magnetization (homogeneously precessing domain (HPD)). It
forms in an inhomogeneous magnetic field, and radiates a
very long induction decay signal with a frequency changing
in time [8]. The HPD forms in a near closed cell in a region of
minimum magnetic field [9]. The mechanism of its formation
corresponds well to a Bose–Einstein condensation of spin
waves (magnons) in a magnetic trap [10].

The spin supercurrent is the result of the stiffness of the
spin part of the order parameter. It can be found in any
magnetically ordered material. However, it is usually difficult
to observe due to different types of instability, as in 3He-A. The
spin precession in superfluid 3He is very stable owing to the
very isotropic spin part of the wavefunction. We can visualize
the explanation of spin supercurrent by suggesting a four fluid
model, in analogy with Landau’s two fluid model. We can
describe superfluid 3He as a mixture of one normal liquid and a
three superfluid quantum liquids in different magnetic quantum
states.

�(�k) = �↑↑(�k)|↑↑〉 + �↓↓(�k)|↓↓〉 + √
2�↑↓(�k)|↑↓ + ↓↑〉,

(2)
where �↑↑,�↓↓ and �↑↓ are the amplitudes associated with
the spin substates |↑↑〉, |↓↓〉 and |↑↓ + ↓↑〉 respectively. The
relation between these substates can be described by the vector
�d, which is actually the spin axis of quantization of the Cooper
pair state.

�(�k) =
(

�↑↑(�k) �↑↓(�k)

�↑↓(�k) �↓↓(�k)

)

=
( −dx(�k) + idy(�k) dz(�k)

dz(�k) dx(�k) + idy(�k)

)
. (3)

The projection of the spin of the Cooper pair on the
direction of �d is equal to zero, similar to the antiferromagnetic
vector �l in antiferromagnets.

The different phases of 3He have different forms of �d(�k)

presentation. For 3He-A it is a single vector for all Cooper
pairs and its dz component is equal to zero. This means that
the substate �↑↓ has zero density and 3He-A is a mixture of a
normal and only two quantum liquids.

The superfluid phase, named 3He-A1 is induced by a
magnetic field near the transition temperature and has only one

magnetic component �↑↑. In other words it is a magnetically
induced ferromagnetic state. Consequently, there is only one
superfluid liquid and the spin transports are bound to a trivial
mass superflow.

In 3He-B the vector �d is a function of the Cooper pair
orbital momentum �k and is described by the equation: �d =
R̂(θ, �n)�k with R̂(θ, �n) being a rotation matrix about the axis �n
through the angle θ . Therefore, 3He-B is a unique magnetically
ordered substance with a very isotropic state. The spin
subsystem and orbit subsystem remain isotropic. What is
broken is the relative symmetry between spin and orbit spaces,
which is described by the vector �n.

Let us consider the consequences of a spatially
inhomogeneous �d for the 3He-A state with a rotation gradient
of �d in the form:

dx + idy = |d⊥|ei�κ �R, (4)

where d⊥ is the component of �d perpendicular to the
quantization axis and �κ is the gradient in direction of �R.
We may consider the spin ‘up’ Cooper pairs �↑↑ and the
spin ‘down’ Cooper pairs �↓↓ as two separate superfluids.
Therefore, for the function �↓↓, we have a phase gradient
�κ directed along �R, while for �↑↑ we have the opposite
gradient (− �R) and consequently a counterflow of these two
superfluids. This counterflow transports magnetization without
mass transport and is called the spin supercurrent. This simple
model can also be considered for 3He-B, but in this case
we should suppose that the counterflow also depends on the
momentum in k space. Indeed, after integration over all k,
we will have the same spin supercurrent, as follows from
Fomin’s theory [7] based on a solution of the antiferromagnetic
resonance equations of Leggett [2]. Here we should point out
that the four fluid model is only a useful way to visualize the
spin supercurrent in superfluid 3He. Consequently, the spin
supercurrent in 3He is an example of spin supercurrent of a
magnetically ordered material, and not only the superfluid one.

The vector �d is bound to the magnetization. One can
produce spatial structures of �d by NMR. There are two
different modes of NMR in superfluid 3He; longitudinal
NMR and transverse NMR. In the first case the mode of
magnetization and orientation of �d oscillate. At a high
enough excitation of this mode, �d begins to rotate. The
longitudinal mode of NMR can also be excited by a first order
A–B transition. The equilibrium magnetization changes at
the transition. The jump of magnetization locally excites a
longitudinal NMR mode. The propagating front of the A–
B transition produces a spatial structure of the �d vector. In
particular, at relatively low temperatures, in the conditions of
an overcooled A phase, the A–B boundary can move fast, while
the magnetic relaxation is small. As a result a spatial structure
of �d , creates spin supercurrents, which redistribute the non-
equilibrium magnetization. Magnetic solitons appear, which
move even faster than the A–B boundary itself and can be
observed far away from the A–B boundary, as was found in the
experiments of Boyd and Swift [11]. This phenomenon was
explained quantitatively by Bunkov and Timofeevskaya [12]
as a result of spin supercurrent flow.
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The first evidence of spin supercurrent was found in the
experiments with transverse NMR, where the magnetization
deflects by a large angle and precess. It must be mentioned
that the mode of magnetization of superfluid 3He is conserved
in the adiabatic approximation due to dipole–dipole energy.
Consequently the local magnetization can only change the
spatial orientation. On the other hand, the component of
magnetization along of the magnetic field is a quasi conserved
value due to the weakness of the magnetic relaxation. In the
presence of a gradient of the external magnetic field a gradient
of the phase of precession appears. The orientations of �M and
�d are closely related. The gradients of the phase of precession
α lead to gradients of �d and consequently to spin supercurrents.
As a result of the spin supercurrent the distribution of angles
of deflection β also changes. The spin supercurrent of the
longitudinal magnetization �JP can be described as a function
of the gradients of the angle of deflection β and the angle of
precession α of the magnetization

�JP = Fα(β)∇α + Fβ(β)∇β. (5)

Consequently, to create long-range spin supercurrents in 3He-
B it is necessary to induce spatial gradients in the phase of the
precession.

The equations of NMR in 3He, the so called Leggett
equations, are the equations of antiferromagnetic resonance
with an anisotropic term due to the nuclear dipole–dipole
interaction. The solution of these equations for bulk 3He-
B shows that the magnetization precesses at the Larmor
frequency if it is deflected by less than the ‘magic’ dipole angle
of 104◦. For larger angles of deflection an additional positive
frequency shift appears. The spin supercurrent transports
the longitudinal component of magnetization in the direction
of higher magnetic field. Consequently the deflection of
magnetization in the region of smaller magnetic field increases
up to a value of 104◦. At further deflection, the dipole–dipole
frequency shift compensates the gradient of magnetic field.
The spatial magnetic energy potential becomes flat and a state
with a coherent precession (HPD) forms.

2. Coherent precession as a magnon BEC

The HPD is a dynamical state which experiences the off-
diagonal long-range order [13]:

〈Ŝ+〉 = S+ = S sin βeiωt+iα. (6)

Here Ŝ+ is the operator of spin creation; S+ = Sx + iSy ;
�S = (Sx , Sy, Sz = S cos β) is the vector of spin density

precessing in the applied magnetic field �H = H �̂z; β , ω

and α are correspondingly the tipping angle, frequency and
the phase of precession. In the modes under discussion, the
magnitude of the precessing spin S equals an equilibrium value
of spin density S = χ H/γ in the applied field, where χ is the
spin susceptibility of 3He-B and γ the gyromagnetic ratio of
the 3He atom. Similar to the conventional mass superfluidity,
which also experiences off-diagonal long-range order, the spin

precession in equation (6) can be rewritten in terms of the
complex scalar order parameter [14–16]

〈�̂〉 = � = √
2S/h̄ sin

β

2
eiωt+iα. (7)

If the spin–orbit interaction is small and its contribution to the
spectrum of magnons is neglected in the main approximation
(as typically occurs in 3He), then �̂ coincides with the operator
of the annihilation of magnons, with the number density of
magnons being equal to the condensate density:

nM = 〈�̂†�̂〉 = |�|2 = S − Sz

h̄
. (8)

This implies that the precessing states in superfluid 3He
realize an almost complete BEC of magnons. The small spin–
orbit coupling produces a weak interaction between magnons
and leads to the interaction term in the corresponding Gross–
Pitaevskii equation for the BEC of magnons (furthermore we
use units with h̄ = 1):

δF

δ�∗ = 0, (9)

F =
∫

d3r

( |∇�|2
2mM

− μ|�|2 + ĒD(|�|2)
)

. (10)

Here the role of the chemical potential μ = ω − ωL is played
by the shift of the precession frequency from the Larmor value
ωL = γ H ; the latter may slightly depend on coordinates if
a field gradient is applied. In coherent states, the precession
frequency ω is the same throughout the whole sample, even in
non-uniform field; it is determined by the number of magnons
in BEC, NM = ∫

d3rnM, which is a conserved quantity if the
dipole interaction is neglected. In the regime of continuous
NMR, ω is the frequency of the applied RF field, ω = ωRF,
and the chemical potential μ = ωRF − ωL determines the
magnon density. Finally, mM is the magnon mass; and ĒD

the dipole interaction averaged over the fast precession. The
general form of ĒD(|�|2) depends on the orientation of the

orbital degrees of freedom described by the unit vector �̂l of the
orbital momentum, see [17].

In the coherent precession of bulk 3He-B the spin–orbit

coupling orients the vector �̂l along the axis of precession,

i.e. �̂l ‖ �H . In this case the interaction term ĒD, expressed
through the condensate order parameter, has a form different
from the conventional 4th order term in dilute gases [16]:

ĒD = 0, |�|2 < 5
4 S, (11)

ĒD = 8

15
χ�2

L

(
25

16
− 5|�|2

2S
+ |�|4

S2

)2

, |�|2 > 5
4 S.

(12)
Here �L  ωL is the Leggett frequency which characterizes
the dipole interaction. If the chemical potential μ is negative,
i.e. ω is less than ωL, the minimum of the Ginzburg–Landau
(GL) energy ĒD(|�|2) − μ|�|2 corresponds to � = 0, i.e. to
the static state with non-precessing equilibrium magnetization
(β = 0). For μ > 0 (i.e. for positive frequency shift),
the profile of the (normalized) energy density is shown in

3



J. Phys.: Condens. Matter 21 (2009) 164201 Yu M Bunkov

Figure 1. The Ginzburg–Landau energy ĒD(|�|2) − μ|�|2 in bulk
3He-B as a function of magnon density (tipping angle of precession)
for different values of the normalized chemical potential
μ̃ = (ω2

RF − ω2
L)/�2

L, The energy minima correspond to magnon
BEC, i.e. coherent HPD states precessing with a frequency shift
equal to the chemical potential.

figure 1 for several values of μ, given in dimensionless units
μ̃ = (ω2

RF − ω2
L)/�2

L ≈ μ/(�2
L/2ωL). The minimum of

the GL energy corresponds to |�|2/S = (5/4) + (15/32)μ̃.
The consequence of the peculiar profile of the interaction term
is that, distinctly from the dilute gases, the formation of the
magnon BEC state (HPD) starts with the finite magnitude
|�|2 = (5/4)S. This means that the coherent precession
starts with a tipping angle equal to the magic Leggett angle,
β = 104◦. Let us now add a gradient of magnetic field. The
profile of the energy density for different parts of the cell is
shown in figure 2 for the same frequency of NMR precession.
The difference between the frequency of precession and the
local Larmor frequency leads to a different chemical potential
in the top and the bottom of the cell. The position with
μ = 0 (position of the HPD domain boundary) is determined
by the balance of the longitudinal magnetization in the cell.
With relaxation, the longitudinal magnetization increases and,
consequently, the boundary moves to lower fields. The
HPD state can persist indefinitely, if one applies a small
RF field to compensate the losses of magnons caused by
the small spin–orbit interaction. In conventional magnetic
systems, the magnetization precesses in the local field with
the local frequency shift and thus experiences dephasing in an
inhomogeneous field. In the case of magnon BEC, the rigidity
of the order parameter (the gradient term in equation (10))
plays an important role. The spatial dephasing leads to the
gradient of chemical potential. This in turn excites the spin
supercurrents, which finally remove the gradient of chemical
potential. Finally, the gradient of the local field is compensated
by a small gradient of magnon density |�|2 in such a way that
the precession frequency and its phase remain homogeneous
throughout the whole sample. In a pulsed NMR experiment
the magnetization is deflected by a strong RF pulse. The
induction decay signal at a given gradient should completely
disappear in about 10 ms. Instead, after a transient process

Figure 2. The Ginzburg–Landau energy ĒD(|�|2) − μ̃|�|2 as a
function of magnon density for the cell placed in a gradient of
magnetic field ωL (this corresponds to a gradient of normalized
chemical potential μ̃ = (ω2 − ω2

L)/�2
L).

of about 2 ms, the induction signal acquires an amplitude
corresponding to about 100% of the deflected magnetization
with a spontaneously emerging phase, as shown in figure 3.
This coherent state lives about 500 times longer than in the
non-interacting spin system.

The HPD has been observed, studied and explained on
the basis of the theory of spin superfluidity and nonlinear
NMR [8]. However, the consideration of this phenomenon
in terms of the magnon BEC not only demonstrates a real
system with BEC of excitations, but also allows us to simplify
the problem and to study and search for other types of
magnon BEC in 3He. New BEC states were discovered: Q-
balls [18]; the HPD2 state in a deformed aerogel [19]; coherent
precession in 3He-A in a deformed aerogel [20]; etc. More
detailed explanations of magnon BEC can be found in review
articles [10, 16].

3. Demonstration of spin supercurrent

In order to demonstrate the non-potential flow of magnetiza-
tion, two HPDs were excited in two cylindrical cells by apply-
ing two independent RF fields. The cells were placed in the
same magnetic field and connected by a channel of 1.4 mm di-
ameter and 7 mm length. The HPD states play the role of elec-
trodes, and the RF field frequency the potential. In the mag-
netic field the spin current transports the Zeeman energy, which
can be measured by the balance of dissipation in the two cells.
We have demonstrated spin-current flow, which is determined
by the phase gradient of magnetization precession along the
channel [21]. We have observed the Josephson phenomenon
by adding an orifice inside the channel [22]. The magnetic co-
herence length of HPD depends on the distance from the HPD
boundary and the gradient of magnetic field. We have observed
a sinusoidal and deformed phase-current dependence as well as
a phase slippage regime by changing the position of the HPD
boundary, see figure 4. The detailed explanation of the Joseph-
son experiments and many other experiments, which we have
no space to discuss here, can be found in the review article [14].
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Figure 3. The typical signal of HPD decay; (A) stroboscopic record of the signal; (B) amplitude of signal; (C) frequency of the signal.
Frequencies 469.95 and 469.4 kHz correspond to the Larmor frequency at the top and the bottom of the cell.

Figure 4. The Josephson experiment. Two NMR cells connected by a channel with a diaphragm. Two independent CW NMR coils control
the phase of precession of HPDs. The spin supercurrent through a diaphragm transports the magnetization and, consequently, Zeeman energy.
This energy transport was measured by an increase of the adsorption signal in one cell and its decrease in another cell. The records of
adsorption signal dependence on the difference between the phase of the HPDs is shown in the inset. (a)—classical Josephson signal,
(b)—signal with distortion, (c)—phase slippage.

4. Conclusion

In this short article we were not able to mention all the
experiments with spin supercurrent made during the 20 years
after its discovery in the Institute for Physical Problems in
Moscow by Borovik-Romanov, Bunkov, Dmitriev, Mukharsky
and its explanation by Fomin. An outline of the basic
theoretical and experimental aspects of the spin supercurrent

can be found in review articles [7, 14] and others. Here
we have briefly presented the state of spin superfluidity
investigations. First of all, many of the experiments were
done in the Institut Neel (ex. CRTBT) in Grenoble, by
Bunkov and his collaborators [23]. There is a long history
of collaborations between the Institute Kapitza in Moscow and
the Low Temperature Laboratory of the Helsinki Technological
University, starting with the very successful Soviet-Finnish

5



J. Phys.: Condens. Matter 21 (2009) 164201 Yu M Bunkov

project ROTA. In the framework of this project Bunkov and
Hakonen [24] have made a pioneering experiments on vortices
and counterflow interactions with HPD. Later it was found that
HPD supplies a very useful tool for studying the dynamics
of superfluid 3He under rotation. Recently a new magnetic
coherent quantum state, ‘Q’-ball, has been applied to the
study of vortices and counterflow at the limit of very low
temperatures. The HPD studies at the limit of ultralow
temperatures were done at Lancaster University, UK. NMR in
the Landau field [25] and a new state of coherent precession,
Persistent signal [26] were observed. Many investigations of
HPD dynamics were done by the experimental group from
Kosice, Slovakia [27]. The problem of the HPD instability
in a wide range of magnetic fields was studied at Cornell
University, USA [28]. The HPD in an aerogel under rotation
was investigated at Kyoto University and the Institute of Solid
State Physics, Kashiva, Japan [20]. Finally, as was mentioned
previously, another mode of spin supercurrent was observed at
Los-Alamos Laboratory [11].
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